

INTRODUCTION

In summer of 2021, The University Retirement Community (URC) experienced a power outage for some hours. In response, the residents formed URC Energy Sustainability and Resiliency Committee. Currently, the URC does not have a reliable energy backup and storage system, leaving residents vulnerable to heat and other potentially fatal extreme weather adversities. The Committee tasked us to design a reasonably costed solar photovoltaic (PV) and battery storage system that will allow critical operations and functions to continue at the URC for at least several hours during an outage.

SOLAR PV & BATTERY SYSTEM DESIGN

To design multiple configurations of solar photovoltaic and battery energy storage systems, the team devised an extensive methodology with specific objectives presented in the methodology diagram.

UHelioScope

OPTIMAL DESIGNS

1,906 hours of usable sunlight per year Based on day-to-day analysis of weather patterns

104,970 sq feet available for solar panels Based on 3D modeling of your roof and nearby trees

RECOMMENDATION

Description

Ground-mount (SAT)

Rooftop, S/E/W surfaces

Carports

1. Preliminary Analysis

Client meeting & site visit, data retrieval (utility bills, building schematics), research and literature review

2. System Design NREL REopt for battery configurations

A HelioScope design of solar PV systems including rooftop, carport and groun-mount (SAT) subsystems. Total system szie: 1875 kWp.

AC	DC	Specific Energy	Annual Energy	Pct. Of Annual
(kW)	(kWp)	(kWh/kWp)	(kWh/yr)	Energy Demand
337	391	1484	580	12%
890	1080	2046	2220	46%
336.8	404.1	1581	527.1	11%
1564	1875		3327	69%

We recommend 1875 kWp sized solar system. Techno-economic analysis recommends systems 9, 6, and 8 (in this order) due to their best benefit-cost ratio, IRR and payback period at a practical cost.

Dayback Dariad for the Dasig	nod Systems				
Payback Period for the Desig	ned Systems				
Details	Battery kWh	Years			
1875 kW Rooftop Solar		3.3			
Solar + 30% Load Storage 4h	16456	5.2			
Solar + Half Load Storage 4h	8228	5.3			
Solar + 30% Load Storage 8h	5485	5.5			
Solar + Full Load Storage 4h	2743	5.8			
Solar + Full Load Storage 8h	2743	6.6			
Solar + Half Load Storage 8h	1371	7.2			
Solar + Half Load Storage 24h	4937	7.5			
Solar + 30% Load Storage 24h	1646	8.1			
Solar + Full Load Storage 24h	823	13.8			
tem Area Comparison					